
1

VirusPredictor Manual (Version 1.0)

August 1, 2024

2

Software introduction
VirusPredictor (version 1.0) is comprised of three sections, including DNA sequence
transformation and feature selection; three-class virus prediction XGBoost model training and
testing; and six-class subgroup prediction XGBoost model training and testing. VirusPredictor
first classifies the query sequences into one of the three classes, i.e., infectious virus, endogenous
retrovirus (ERV), and non-ERV human. The predicted infectious virus candidates will then be
further classified into one of the six virus taxonomic classes, i.e., dsDNA, ssDNA, Retro-
transcribing, ssRNA(-), ssRNA(+), and dsRNA. VirusPredictor is written in Python. Please note
this version cannot distinguish other sequences other than these three categories (virus, ERV, and
non-ERV human) as every sequence will be classified into one of these three in this version even
if it is not any of the three. We are adding an option to mark ambiguous sequence as unknown
and adding new functions by expanding the applications to distinguish other sequence categories.

Contributors
Guangchen Liu (gch_liu@163.com)
Xun Chen (xun.chen@uvm.edu)

Citation
Guangchen Liu, Xun Chen, Yihui Luan, and Dawei Li. VirusPredictor: XGBoost-based software
to predict virus-related sequences in human data. Bioinformatics. 2024. Revision.

Software download
www.dllab.org/software/VirusPredictor.html

Copyright
VirusPredictor is licensed under the Creative Commons Attribution-NonCommercial 4.0
International license. It may be used for non-commercial use only. For inquiries about a
commercial license, please contact the corresponding author at dawei.li@ttuhsc.edu or Texas
Tech University Health Sciences Center Office of Research Commercialization.

3

Update log

Recent major updates

1. Accepted input sequences in both FASTQ and FASTA formats, automatically converted
FASTQ to FASTA, and then continued to the next steps.

2. Added input file and output file directories to help users easily add their query sequences
and locate the prediction results.

3. Updated software code to automatically identify an input sequence with missing
nucleotides and accelerate calculation speed.

4. Corrected several bugs in the Python codes.

Update log

Ver 1.0
08/01/2024 A .tar version is added
02/19/2024 Added three additional test files (“test_virus.fasta”, “test_ERV.fasta” and

“test_non-ERV.fasta”) to the packages.
12/28/2023 Updated model names to be recognized directly by main functions
11/19/2023 Adjusted input-/output-files directory setting to be easily utilized by users
10/28/2023 Updated the training step of both XGBoost models for GPU version users to

accelerate model training speed
09/14/2023 Optimized the logic of the Python code
09/14/2023 Optimized the structure of the models

Ver 0.9
06/30/2023 Corrected bugs in the main Python script
05/19/2023 Tested the performance of the six-class model on three gradient length test

sequences, i.e., 150-350, 850-950, and 2,000-5,000 bp
04/14/2023 Tested the performance of the three-class model on three gradient length test

sequences, i.e., 150-350, 850-950, and 2,000-5,000 bp

Ver 0.8
02/03/2023 Added input file and output file directories to help users easily add their query

sequences and locate the prediction results
01/15/2023 Corrected three bugs in the k-tuple method in the Python script

Ver 0.7
11/27/2022 Corrected a bug in the recoding method in the Python script
11/25/2022 Updated the macro average metrics in the Python codes

Ver 0.6
09/20/2022 Utilized random forest algorithm to evaluate the performance of different top

features to find the optimal subset of features
08/16/2022 Added ten cut length gradient sequences into the testing datasets
07/11/2022 Added ten cut length gradient sequences into the training datasets

4

Ver 0.5
05/16/2022 Corrected bugs for checking input files
05/08/2022 Extended the input file format to accept FASTQ format of sequences
05/08/2022 Updated the Python code to automatically identify sequence with missing

nucleotides and report a warning in the output file

Ver 0.4
02/23/2022 Added macro average precision, recall, and F1 score metrics for model evaluation
02/17/2022 Utilized MinMaxScaler strategy to normalize the training and testing datasets to

improve the models’ accuracies

Ver 0.3
12/05/2021 Retrained the models with grid-search strategy to obtain new hyperparameters of

the models
11/21/2021 Updated the non-ERV human dataset to train more powerful models

Ver 0.2
09/01/2021 Updated the dimension of input dataset and re-trained the models
08/21/2021 Added three new sequence numerical methods to obtain more information from

input sequences for the models

Ver 0.1 released
05/09/2021 Released VirusPredictor Version 0.1 (testing version)

5

Software environment and installation

OS systems: Linux, Mac, or Windows Version 10 or above. In the following manual, we use
Windows Version 10 as an example to demonstrate the workflow.

To use VirusPredictor, Python and the following dependent packages should be installed:

Python: Python Version 3.7/3.8/3.9 (or Anaconda3 2021/2022)
Python packages:

• xgboost version 1.0.2 (must be this version)
• scipy version 1.6.2 (must be this version)
• biopython version 1.78
• pandas version 0.23.4
• numpy version 1.18.3
• joblib version 1.1.0
• scikit_learn 1.0.2
• openpyxl 3.1.2

Note: Users can use any Python IDE (e.g., Spyder, Pycharm, VScode, and Sublime) to run
VirusPredictor. If your versions of Python and/or the above packages are newer than the
aforementioned version, please try VirusPredictor first. If you see error messages, please try
uninstalling your newer version and instead reinstalling the specified version as described above.
For any questions, please contact us for help at gch_liu@163.com.

Software Use

Step 1: Data preparation

Open VirusPredictor_v1.0 package and put your testing sequences into the
“VirusPredictor_v1.0\input_files” directory (Figure 1). VirusPredictor accepts both FASTA and
FASTQ format of your testing sequences. If your testing sequences are in FASTQ format,
VirusPredictor will automatically transform to FASTA and write to the “input_files” directory
once you conduct Step2 (i.e., Run work.py).

Figure 1 Example input files with query sequences.

6

Step 2: Run work.py

Set directory for Python to make sure your current work directory is in VirusPredictor_v1.0.
Click work.py to run it and wait (Figure 2). It will automatically complete the entire prediction
procedures. Below is an example using Anacoand3/Spyder interface.

Step 3: Open results

After the work.py ends, the prediction results will be automatically written into the
“VirusPredictor_v1.0\output_files” directory (Figures 3 and 4).

Figure 2 Example using Anacoand3/Spyder interface.

Figure 3 Example output files with prediction results.

7

Frequently Asked Questions

Q1: What is the requirement of query sequences? How do you deal with missing nucleotides in
query sequences?

Answer: The query sequences must be in FASTA or FASTQ format, and must be continuous and
cannot contain carriage returns, spaces or any other symbols except nucleotides A/C/G/T/a/c/g/t.
VirusPredictor automatically converts a/c/g/t to A/C/G/T. If a sequence contains missing
nucleotides N, or any other symbols except nucleotides A/C/G/T/a/c/g/t, VirusPredictor will
discard this sequence and generate a warning message in the output file. In case there are “U”s in
your RNA sequences, please convert “U” to “T” first.

Q2: Where can I find human ERV, and non-ERV human sequences?

Answer: Our ERV sequences (hg38_ERV_100bp.fa; min length = 100 bp) and non-ERV human
sequences (hg38_rmsk_ERV.fa; min length = 100 bp) in FASTA can be downloaded from our
website (www.dllab.org/software/VirusPredictor.html).

Q3: Which sequence lengths are most useful for accurate prediction purposes?

Answer: Since the prediction accuracies increase as the sequences become longer, we suggest
assembling Illumina short reads into contigs, e.g., ~1,000 bp (at least ~800 bp) or longer
sequences, whenever possible before predictions. The longer the input sequences, the higher the
prediction accuracies.

Figure 4 Example output file showing predictions. The first two columns show IDs and names
of the testing sequences. The prediction results of the three-class XGBoost model are listed
in column three. If a sequence is predicted as from a virus, the six-class XGBoost model will
be then activated to further predict its viral subgroup as shown in column four.

8

Q4: How to correctly interpret the results from VirusPredictor?

Answer:
ERVs in the human genome: The human reference genome contains both ERV and non-ERV
sequences. Because ERVs are under-studied, many ERVs have not been identified or annotated
in the human genome. Because some “non-ERV” sequences from the ERV-masked human
genome are still indeed ERV sequences, we anticipate that some of these “non-ERV” sequences
are predicted as ERVs when the query sequences are short.

Average accuracies: The accuracies presented in our paper were the average values of a large
number of testing sequences. Thus, a small number of testing sequences may result in deviations
from our reported average accuracies.

Q5: Can I use VirusPredictor to train my own classification models for other species, such as
classifications of virus vs. bacteria, and of dsDNA subfamilies?

Answer: Sure, VirusPredictor supports users to customize and use their own datasets (as long as
each sequence has a label) to train new models for their own classification projects. To do this,
just prepare your own data (e.g., multiple files separately) in FASTA format and put them under
the main directory. Run train.py and you will obtain two model related results, such as
“model_xgboost_3labels_vNCBI_nonLTR_LTR_model_4_GPU.m” and
“scaler_3labels_vNCBI_nonLTR_LTR_model_4_GPU.m”. Put these two results into the
“\VirusPredictor_v1.0\model” directory, then you run work.py to test your model described in
this manual. VirusPredictor can be expanded to other sequence classification studies such as
classification of virus vs. bacteria using metagenomic data. Our VirusPredictor open-source
pipeline has built-in DNA sequence transformation and feature selection. Users can also replace
XGBoost with other machine learning algorithms to build customized models.

Q6: How can I use GPU to train the models?

Answer: To accelerate model training speed, GPU users may use the code "model =
xgb.XGBClassifier(tree_method='gpu_hist')" (see train.py line 164) in the training step for both
XGBoost models.

Q7: If I have other questions about using this software, how could I get help?

Answer: Please contact with Dr. Liu: gch_liu@163.com or Dr. Li: dawei.li@ttuhsc.edu for any
bugs, questions, or suggestions, and we will help you as soon as possible.

